Redundant Interdependencies Boost the Robustness of Multiplex Networks
نویسندگان
چکیده
In the analysis of the robustness of multiplex networks, it is commonly assumed that a node is functioning only if its interdependent nodes are simultaneously functioning. According to this model, a multiplex network becomes more and more fragile as the number of layers increases. In this respect, the addition of a new layer of interdependent nodes to a preexisting multiplex network will never improve its robustness. Whereas such a model seems appropriate to understand the effect of interdependencies in the simplest scenario of a network composed of only two layers, it may seem unsuitable to characterize the robustness of real systems formed by multiple network layers. In fact, it seems unrealistic that a real system evolved, through the development of multiple layers of interactions, towards a fragile structure. In this paper, we introduce a model of percolation where the condition that makes a node functional is that the node is functioning in at least two of the layers of the network. The model reduces to the commonly adopted percolation model for multiplex networks when the number of layers equals two. For larger numbers of layers, however, the model describes a scenario where the addition of new layers boosts the robustness of the system by creating redundant interdependencies among layers. We prove this fact thanks to the development of a message-passing theory that is able to characterize the model in both synthetic and real-world multiplex graphs.
منابع مشابه
Redundant interdependencies boost the robustness of multilayer networks
In the standard model of percolation on multilayer networks, a node is functioning only if its copies in all layers are simultaneously functioning. According to this model, a multilayer network becomes more and more fragile as the number of layers increases. In this respect, the addition of a new layer of interdependent nodes to a preexisting multilayer network will never improve its robustness...
متن کاملThe robustness of multiplex networks under layer node-based attack
From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this...
متن کاملNetwork robustness of multiplex networks with interlayer degree correlations.
We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of links, focusing on the role of correlations between degrees of a node in different layers. We use generating function formalism to address various notions of the network robustness relevant to multiplex networks, such as the resilience of ordinary and mutual connectivity under random or t...
متن کاملOptimization of robustness of interdependent network controllability by redundant design
Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of i...
متن کاملUtilizes the Community Detection for Increase Trust using Multiplex Networks
Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017